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ScienceDirect
Processes and manufacturing in the biopharmaceutical

industry are mainly based on experimental data and statistical

approaches, however, regulatory expectations of increasing

understanding and insights into methods behind medicinal

products have paved the way for employment of more

mechanistic and first principle modeling tools and concepts.

Current, advanced modeling tools can basically be divided into

four groups: biophysical modeling, mechanistic modeling,

computational fluid dynamics, and plant modeling. Although

very useful in themselves, the first three modeling concepts

may also be used to establish better plant models, where digital

twins of manufacturing plants are pursued broadly in the

industry. This review presents the current development stage,

opportunities, and challenges of the four modeling tools, and

activities needed to reach future state of modeling or ‘in silico

CMC’ (Chemistry, Manufacturing and Controls), a state where

modeling, based either on first principles or hybrid approaches

combining both empirical and mechanistic approaches, can be

routinely employed in lieu of solely empirical or experimental

approaches. It builds largely on presentations and discussions

at the recent 4th Mini Modeling Workshop from May 25, 2021.
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Introduction
Modeling tools are increasingly employed in the bio-

pharmaceutical industry to improve and control

manufacturing processes with increasing application of

chemical engineering approaches [1��,2�]. The models

and tools have been developed in academia over the last

100 years [3] and leverage significant advancements in

other disciplines including computational chemistry [4]

the utility of which is fully recognized (e.g. Nobel Prize

for Computational Chemistry in 2013) with the applica-

tion to complex biomolecular systems and biophysical

interactions. Despite the specific investments by aca-

demic researchers who laid the first principles founda-

tions for these efforts [5–8], the maturity of these tools

have not until recently matched industry expectations/

requirements for implementation. However, with the

introduction of high-throughput screening (HTS) tech-

niques, increased computational power, and sufficient

understanding of the benefits provided by these model-

ing approaches, implementation has increased in the last

decade. Part of the challenge in application of these tools

was the perception that the systems were merely too

complex. This paper shows, it should be feasible,

although challenging, to derive and apply appropriate

models for bioprocessing systems. We also list the gaps

remaining to apply models to these systems. The adop-

tion of modeling approaches; translated and referred to

as digital twins; has increased due to industry 4.0. Emerg-

ing from this adoption is not a ‘one size fits all’ definition

of a digital twin but rather a land scape view, product,

process, production, and performance (Siemens Digital
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2 Separations engineering: downstream bioprocessing

Table 1

4th Mini Modeling Workshop

Biophysics session
Chairs: Francis Insaidoo, MSD; John Welsh, MSD

Sean Burgess, Genentech Using quantitative structure property relationships to predict monoclonal antibody binding

properties

David Saleh, BI Modeling the impact of amino acid substitution in a monoclonal antibody on cation exchange

chromatography

Armenio Barbosa, University NUOVA Lisbon Molecular details of de Novo designed affinity-adsorbents

Biophysics breakout session

Moderators John Welsh, MSD; Steve Cramer, RPI

Panelist Lijuan Li, Takeda

Mechanistic modeling — downstream session

Chairs: Shuchi Yamamoto, Yamaguchi University; Felix Wittkopp, Roche

Giorgio Carta, University of Virginia Modeling the chromatographic behavior of conformationally flexible

Multidomain proteins

Christian Frech, University of Applied Sciences

Mannheim

Modeling and simulation of antibody elution behavior under high load conditions in cation

exchange chromatography by using a modified SMA isotherm

Yinying Tao, Eli Lily & Company Predictive modeling for TFF process development in high concentration self-buffering

formulations

Mechanistic modeling — upstream session

Chairs: Arne Staby, Novo Nordisk; Jan Griesbach, Roche

Shantanu Banerjee, IIT Delhi Mechanistic modeling of continuous clarification of Chinese Hamster Ovary (CHO) cells

Using Acoustic Wave Separation Technology

Katrin Paul, Novartis FBA-Based Process Optimization by Decreasing Ammonia Accumulation

Thomas Wucherpfennig, BI Computational models for bioreactors and cultivation processes in biologicals

Development: Stirred, not Shaken!

Mechanistic modeling — breakout session

Moderators Felix Wittkopp, Roche; Jan Griesbach, Roche

Panelists Isabell Hagemann, Bayer AG

Gang Wang, Boehringer-Ingelheim

Juliane Diedrich, Amgen Research

Emmanouil Papadakis, Novo Nordisk

Plant modeling session

Chairs: Deenesh Kavi Babi, Novo Nordisk; Bob Todd, KBI Biopharma

Christos T. Maravelias, Princeton University Batch production scheduling: methods and applications

Lijuan Li, Takeda Driving strategic decisions making for cost reduction and manufacturability through process

economic modeling

Johann Kaiser, Novo Nordisk A multi-scale approach for monoclonal antibody (mAb) process modeling

Plant modeling breakout session

Moderators Suzanne Farid, University College London

Deenesh Kavi Babi, Novo Nordisk

Arne Staby, Novo Nordisk

Computational fluid dynamics section

Chair: Steven Hunt, Allogene

Ross Kenyon, Regeneron Pharmaceuticals A combined computational and data-driven approach to accelerate drug

Product mixing parameter development

Abraham Lenhoff, University of Delaware Scale-down of precipitation: CFD, population balance models and experiment

Ignacio Montes Serrano, Austrian Centre of

Biotechnology

CFD simulations for the hydrodynamic characterization of microtiter plates for the development

of a scale-up strategy of downstream processes based on volumetric power input

Computational fluid dynamics breakout session

Chairs Abraham Lenhoff, University of Delaware; Bob Todd, KBI Biopharma

Panelists Eric von Lieres, Research Center Jülich

Andrew Zydney, Penn State University

Open challenges session

Chairs: David Roush, MSD; John Welsh, MSD

Maximilian Krippl, University of Natural Resources

and Life Sciences, Vienna

Increasing efficiencies in bioprocess development and manufacturing through digital process

development

Johannes Schmölder, Research Center Jülich Towards integrated process chain simulation in biotechnology

Sofia Nunes, University College London A novel approach to quantify floc growth and strength for robust primary recovery operations

Open challenges breakout session

Moderators David Roush, MSD; Giorgio Carta, University of Virginia

Panelists Bernt Nilsson, Lund University

Todd Przybycien, Rensselaer Polytechnic Institute

Current Opinion in Chemical Engineering 2022, 36:100813 www.sciencedirect.com



Model Utilization in the Biopharmaceutical Industry: Current versus Future State Babi et al. 3
Industries Software: Digital Twin. https://www.plm.

automation.siemens.com/global/en/our-story/glossary/

digital-twin/24465). Generically, a digital twin therefore

can be defined as a virtual, cyber-physical system (prod-

uct, process, production and/or performance) to be used

for moving from a current to improved-optimized future

state by testing ideas via modeling and simulation.

A thorough assessment of the current state of the broad

range of modeling activities to support biologics develop-

ment and production was obtained during Recovery of

Biological Products 4th Mini Modeling Workshop

(4MMW) held virtually on 25 May 2021. A total of

127 participants representing 58 diverse academic (21)

and industrial (37) institutions contributed to the discus-

sions. The workshop focused on key areas of modeling

that have direct relevance to challenges faced in the

industry and provided a forum for connecting leading

academic researchers with industrial researchers and sup-

pliers. The four main topics included Biophysics, Mech-

anistic Modeling (Upstream and Downstream), Plant

Modeling, and Computational Fluid Dynamics provided

in separate sections below, as well as a session for Open

Challenges (key areas/technical challenges for future

development). The workshop program, contributors

and chairs are listed in Table 1. The publication from

the 3rd Modeling Workshop [1��] was the substrate to

initiate the discussions at 4MMW and to be used as a

reference point for assessing progress in the modeling

space combined with general trends and developments in

the field. A summary of the current progress versus the

gaps identified at the 3rd Modeling Workshop is pre-

sented in Figure 1. Advances in implementation over the

last two years have mainly occurred within the biophysics,

mechanistic, and plant modeling areas, and cover ele-

ments like, for example, candidate selection support,

models for communication with health authorities, and

commissioning of plant changes, respectively. Workshop

participant survey results are provided in Figure 2. In

general, survey respondents viewed later stages of devel-

opment as requiring more significant research to imple-

ment although some are sufficiently mature for commer-

cial use (e.g. Computational Fluid Dynamics, Plant

Modeling, Downstream Mechanistic Modeling), whereas

modeling in early stages is more ready for deployment.

One interesting observation was that the most survey

participants identified the red bar (gaps limiting deploy-

ment) as the main level of maturity.

The proposed and emerging viewpoint of digital twins for

manufacturing development is presented in Figure 3a

and b. These show how different scales are connected

based on competing complexities and how these are

selected based on three main properties, purpose, com-

plexity, and maturity, respectively. One key point from

the analyses summarized in Figure 3 is that the compu-

tational areas that are sufficiently mature for commercial
www.sciencedirect.com 
utilization which begs the question as to what are the

impediments to overcome to achieve broad industry

adoption? The figure provides an assessment of the

current state of investment in the various modeling areas

to address the required gaps and support broader

implementation.

Model utilization in the biopharmaceutical
industry
Biophysics

Biophysical modeling has the potential to utilize the

biophysical properties of proteins and ligands to direct

biologics design, development, and manufacturing. Cur-

rently, there are several tools commercially available that

can be used to calculate biophysical properties of mole-

cules, (CCG-MOE [9] and Schrödinger [10]). In the

instance where no known homologous structure is avail-

able to be used as a template to build the structure of a

new protein sequence, new tools are in development to

build or predict atomic detailed structure of proteins

using ML and AI, for example, AlphaFold from Google

[11]. Novel molecular properties and descriptors are

constantly in development in industry, academia, and

other joint collaborations [12�]. Models exist that correlate

these biophysical properties to process conditions [5,13].

However, these models tend to be limited in scope and

are typically not broadly applicable. Linking molecular

properties and descriptors to process related conditions in

a way that is not therapeutic molecule specific and

modality agnostic is an area that is currently underdevel-

oped (Figure 1).

An active area of research is the use of QSAR-based

models to build predictive properties of monoclonal anti-

bodies. The general assumption in these studies is to

identify molecular properties that correlate to experimen-

tally determined values [5,13]. A significant challenge in

this approach is the type of structure properties used and

how broadly applicable they are to other molecules that

are not part of the training set. One practical way to

correlate molecular properties to process outcome is to

investigate the impact of amino acid substitution on

process performance, for example, chromatographic

separations. By perturbing the molecular properties of

a given molecule and testing under standardized condi-

tions, a better understanding of process development will

emerge. However, if these activities are not coupled with

a better understanding of ligand properties and effective

ligand design, a comprehensive knowledge will not be

attained. If a better understanding of ligand properties

and linker chemistries is attained, predictive models can

extend between chromatographic modalities.

A general limitation of a robust and broadly applicable

biophysical model for biologics process development is

the limited data set available for model building. A
Current Opinion in Chemical Engineering 2022, 36:100813
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Figure 1
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Predictive models do not necessarily
exist (confirmation of experimental
results feasible)

Initial models established (including
multiphase), eg, ambr scale-down

Modeling not yet fully quantitative
(eg, aggregate formation, discrete
particles, bubble size distribution/
coalescence)

Directional/semi-quantitative effects
of shear are feasible (experimental
confirmation is challenging)

Experimental confirmation of
chromatography flow distribution
established and general collaboration
with experimentalists to validate CFD
models

Heterogeneity of packing, flow
distribution

Value maximized by implementing
CFD upstream in equipment or
during process development

Combination of homology models and mechanistic
DSP modeling for knowledge transfer

Intelligent strategies to combine model applications
such as modeling of all CQAs, ie, DNA, HCP, resin
fouling, temperature, etc

Streamiined model calibration with simple and 
modelar isotherms

Detailed understanding of non-standard protein
seperation effects like protein-protein interactions,
dimerization, or changes in protein conformation

Mechanistic understanding of all modes of
chromatography

Same as early stage and additionally,
this is the best approach for 
understanding the process to be
built. Model frameworks and solution
strategies independently exist for 
solving the plant simulation problem

Plant model also helps with
commissioning; planning IQ, OQ,
PPQ, etc, and characterization of
short (mid-/long) term changes

As the previous two stages,
complexity of the models used here
are dependent on the mechanisstic
models and as they improve, the
plant simulation improves

Unknown credibily of existing CFD
models – establishment of industry
best practices lacking

Utilized to support deviation
management

Quantitative assessment of facility fit
to potentially support PPQ

Combination of biological models and mixing models

Smart analytical strategies for challenging molecules
like complex protein formats, which create a strong
database for pure mechanistic models

Scale-down for HTS systems

Mechanistic understanding of all modes of
chromatography

Limited isotherms

Standardization (including reference data sets) for
modeling tools does not exist

Understanding limited to specific modalities (IEX)
as opposed to mixed mode

Current State: Simplified/basic models exist to
support PD surrogates for impurities (lumped)

Limited understanding of process variability,
scale-up/scale-down

Incorporating dynamics into predictive tool
development – explore multiple scales from
atomic to coarse grain at different time scales

Expand the scope from antibodies/proteins to
include other modalities, eg, DNA, RNA, viral
vector, etc

Mapping/characterization of process and
product-related impurities on chromatographic
performance

Scale-up, transfer,
plant simulation

Biophysics to supplement mechanistic model

Missing link from biophysics parameters to
process and stability (in lieu of experiments)

Same as late Stage

Surrogates for impurities, eg, HCP, charge variants
(lumped)

Mixed Mode isotherms are available but rarely
applied

Initial models for scale-down/HTS

Current state: Sophisticated models for single process
steps (IEX) exist to support PD and communication
with health authorities

Limited ability to predict epitope
binding/molecular design via in silico screen
for developability and manufacturability
evaluation (ability for relative rank ordering)

Utilize biophysics to address PC-related
question (eg, parametric understanding)

Potential to utilize models to support process
parameter classification

Potential to predict aggregation/deamidation
(limited examples)

Opportunity to use QSAR models to select
operating conditions to evaluate in HTS

Characterization
validation adn
quantitative models

Additionally, having material flow
mapped, sustainability among
selected alternatives using process
mass intensity (PMI) can be
evaluated for selection of the best
process

Same as Early Stage

If mechanistic understanding is
limited, the worst case model can only
solve a purely planning-scheduling
problem. However, this does not limit
evaluation because the objective
here is to minimize investment risk
(= probability x consequence). Here
probability is high and consequence
is low

Confirmation of modeling results
(feasible for PH) via multiple point
sampling

Quantification of mixing – which
model to apply?

Multiphase modeling exists

Limited use of bubble breakage and
coalescence models (eg, population
balance models)

Facility fit – mapping required mixing
conditions and vessels to process
requirements (including engineering
factors)

Ability to predict power numbers
computationally (more accurate than 
experiment)

TBD

Opportunity to use QSAR models to select operating
conditions (eg, resin,pH) to evaluate in HTS for entire
process (orthogonal selectivity)

Understanding limited to specific modalities (IEX) as
opposed to mixed mode (RP and Protein A)

Modeling experiments exceed the number of potential
experimental savings, preliminary analytical methods
hinder the transferability of models to late stage,
primarily applied to but not limited to Mab (applicable to
otner modalities)

Surrogates for impurities, eg, HCP (lumped)

Straightforward model calibration workflows are publicly
available

Current state: Simplified/basic models and commercial
tools exist to support PD (optimization, robustness,
scale-up)

Large curated high-quality data sets
(potentially via consortium)

Some limitations on prediction of specific
PTM

Standard system to prodict stability,
expression, and purification modality
(eg, impact of subtle changes)

Potential to screen modalities for purification

Stability prediction of candidates

Limited ability to predict epitope binding/
molecular design via in silico screen (ability
for relative rank ordering)

Mathematical or hybrid models primarily employed
(e.g. scale-up/scale-down) and systems biology

Models exist for candidate selection/liability ID
and stability (aka in silico developability)

Models are dependent on the 
complexity of the mechanistic models
of unit operations since this 
understanding is translated into
states and tasks per unit time

Process design
qualitative models

Commercial

Mixed Mode Isotherms

QSPR-Tools

Chromatography

Chromatography

Chromatography

Late Stage

Chromatography/Conjugation

Upstream

Upstream

Upstream

Gap

Gap

Gap

Gaps

Gap

Gap

Gap

Gap

Downstream

Downstream

Downstream

Biophysics Mechanistic CFD/Mixing Plant Model/Facility

Early Stage

Upstream

Upstream

Upstream

Standardization (including reference data sets) for
modeling tools does not exist

Current state and gaps to achieve future state of in silico application of modeling concepts in industry. Green: models are sufficiently developed to

support implementation now. Yellow: gaps identified that require modest investments to address before implementation (2–5 years). Gray:

opportunities for exploration or significant gaps required to achieve realization (5–10 years) or may not be scientifically feasible (initial assessment

required). Early stage indicates models appropriate for supporting first-in-human studies or developmental studies. Late stage indicates

quantitative models potentially applicable for licensing applications. Blue text indicates advances in modeling implementation in the last two years

[1��].
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Figure 2
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Current Opinion in Chemical Engineering

Workshop participant survey indicating the current maturity level of Biophysical Modeling, Mechanistic Modeling (USP and DSP), Plant Modeling,

and Computational Fluid Dynamics for Research/Early Stage Development, Late Stage Development, and Commercial Stage. Maturity level is

scored by three levels: Major Research Required (5–10 years), Gaps Limiting Deployment (2–5 years), or Ready to Deploy. The y-axis depicts the

number of survey respondents that indicated the given stage of deployment in each category.
general rule of thumb is to ensure that the training set

should be as diverse as the potential application space.

Another layer of complexity is the types of molecular

descriptors and how accurately they describe the mole-

cules and processes to be predicted. A more informative

set of descriptors emerge as the number of experimental

observations increase. Novel concepts like protein and
www.sciencedirect.com 
ligand dewetting coupled with molecular dynamics hold

the potential to accurately describe most chromatographic

systems. These types of molecular dynamics simulations

are very computationally expensive to fully sample con-

formational space. As computational power increases,

increased use and applicability of these types of simula-

tions will be very valuable.
Current Opinion in Chemical Engineering 2022, 36:100813
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Figure 3

(a)

(b)

Research activity

High Medium Low

Industrial utilization

Outcome: Product-related

Time scale: Milliseconds to yearly

L
en

g
th

 s
ca

le
: 

N
an

om
et

er
s 

to
 m

et
er

s

Outcome: Process-related

Outcome: Product/process-related

Biophysics

Mechanistic

Industrial enablers for
product-process digital twins

Computational
fluid dynamics Plant

(process)

Process development and deviation assessment

Debottlenecking and process
optimization
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Mechanistic

Computational
fluid dynamics

Plant (process)Pharma process
Translation

<\mathematical framework>

Types of understanding required Types of connected representations required

Pharma in-silico process

Lead candidate selection, PTM and liability

assessment, directed PD and formulation

A digital twin of the unit/process reflecting how CPPS

affect CQAs

A digital twin of process equipment that accurately

captures hydrodynamics

A digital twin of the plant to design and/or retrofit based

on product introduction or process optimization

Multi-parameters assessment and dynamics; no single

biophysical parameter points to desired experimental 

outcome

Multi-parameter systems of multiple components, ie,

product and resin

Multi-model (turbulence, flow, BCs, etc) and parameter

systems that require knowledge spanning fluid

mechanics, mathematics, and computer science

Decision space, problem translation, and constraints,

ie, subject to product quality, cost, delivery, and

sustainability

Medium to high: Residue-specific effects are easy to

detect. Bulk properties are still a challenge

Medium to high: Most aspects of the requirements are

reasonably well understood and can be addressed

High: Most aspects related to pure CFD are well

understood. Gaps exist with the inclusion of additional

mechanistic models

Medium to high: Model development

Medium: Solution medium (decision variables explosion,

tractability, computing)

Current Opinion in Chemical Engineering

(a) Modeling Trajectory across different model modalities (multiscale) for enabling Product-Process Digital Twins categorized by research effort

and industrial usage (2019–2021), and (b) Modeling Connectivity across the multiscale highlighting key properties: purpose, complexity, maturity,

for selecting the appropriate model based on industrial requirements.
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Top challenges

1) Design accurate molecular descriptors for predictive

modeling — artificial intelligence (AI), machine learn-

ing (ML), quantitative structure property relationship

(QSAR)

2) Incorporate dynamics into predictive tool develop-

ment — explore multiple scales from atomic to coarse

grain at different timescales

3) Predict optimal process conditions from structure and

biophysical properties — developability, formulation

and manufacturability

4) Predict chromatographic changes from molecular

properties and accurately map out the experimental

design space

5) Expand the scope from antibodies/proteins to include

other modalities, for example, DNA, RNA, viral vec-

tor, and so on

If some of these gaps and challenges can be overcome,

there are two-specific areas where biophysical modeling

could have broad applicability: ‘developability’ assess-

ments during candidate selection and formulation devel-

opment, and prediction of bioseparations (Figure 2).

Developability assessments are a common way to predict

molecular liabilities such as aggregation, fragmentation,

and deamidation propensity before costly development

and clinical investments are made [14–16]. While some of

these assessments already include sequence and some

structural information, better biophysical information and

descriptors could lead to significantly better predictions

and formulations. A recent study and workshop presen-

tation from Saleh et al., has also begun to look at the

impact of sequence modifications on chromatographic

performance, see Ref. [17] and Table 1.

For bioseparations, typical processes rely on filtration or

chromatography unit operations for impurity removal. Pre-

vious studies have demonstrated QSAR to be useful for

chromatographic predictions of model proteins [5,13]. More

recent work has looked to create in silico heat maps as

reported by Burgess at the workshop (see Table 1) that

are similarly predictive to high throughput screening tools

[18–20]. Another impactful application to bioseparations

currently under investigation, as suggested by Armenio

Barbosa in the workshop (see Table 1), would be to use

biophysical structures to design novel ligands, thereby cre-

ating customized and highly specific separation mechanisms.

Mechanistic modeling

The term mechanistic modeling describes the mathemat-

ical description of data applying physical fundamentals.

In contrast to empiric approaches, the degrees of freedom

of mechanistic models are restricted by considering key

mechanisms like for instance kinetics or mass balances.

Mechanistic modeling approaches of chromatography
www.sciencedirect.com 
build on the work done by Irving Langmuir on gas–solid

phase equilibria [21], Tiselius on different modalities of

chromatography [22] and many subsequent authors. The

most common isotherm for ion-exchange is the steric

mass-action (SMA) isotherm, which has been established

in the 1990s [6�] and is still the foundation of a lot of

chromatography modeling, but many other approaches do

also apply [23,24].

Top challenges

1) Combination of homology models and mechanistic

downstream processing (DSP) modeling to enable

transfer of existing models and process knowledge

to upcoming projects

2) Streamlined model calibration with simple and mod-

ular isotherms

3) Intelligent strategies to overcome existing gaps in

current industrial model applications such as modeling

of all critical quality attributes (CQA) parameters such

as DNA, host cell proteins (HCPs), resin fouling,

temperature and so on and enable full mechanistic

filings

4) Detailed understanding of non-standard protein sepa-

ration effects like protein-protein interactions, dimer-

ization, or changes in protein conformation. Collabora-

tions with academia might be a good way forward.

5) High throughput, high resolution, and orthogonal ana-

lytical strategies for challenging molecules like com-

plex protein formats, which create a strong database

for pure mechanistic models

Yet, it has taken the pharmaceutical industry quite some

time to adopt this technology due to lack of coding ability

and rigorous experimental requirements. Software Tools

for mechanistic modeling (ChromX1/DSPX1,

CADET, ChromWorks1, a.o.) are, however, now avail-

able and reduce the entry barrier to chromatography

modeling and in some cases even other unit operations.

Workflows for model calibration have been standardized

and work in many cases [25,26]. Even less common

processes using membrane adsorbers have been success-

fully modeled by companies and used in their process

development/characterization efforts. More and more

companies are taking the final step and are discussing

modeling approaches in downstream processing with the

regulatory agencies and in particular the US FDA. Even

frameworks that govern the quality assurance paradigms

and lifecycle of a certain model are now being presented

to the agencies and, as discussed at the workshop, are

generally well received by authorities (Good modeling

practice for industrial chromatography [27�,28�,29�]). In

addition, companies make use of modeling data, albeit

only to some extent, in their regulatory filings. Although

the submission of modeling data to the regulatory agen-

cies is seen as the pinnacle of modeling, most workshop
Current Opinion in Chemical Engineering 2022, 36:100813
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participants see the value of using modeling to a large

extent for better process understanding during process

development.

Tools for all unit operations to model the platform mono-

clonal antibody (mAb) process have been established,

starting with Protein A chromatography [30], molecular

modeling of affinity Chromatography [31], cation

exchange (CEX) and anion exchange (AEX) chromatog-

raphy, mixing and tangential flow filtration (TFF) models

[32��,33]. Hence, a standard mAb process can have its

digital twin demonstrating the maturity of the field.

However, the field has suffered several setbacks. For

chromatography, the standard SMA isotherm does not

accurately reflect the experimental behavior [34], that is,

when the ligand density varies between lots [35], at high

load densities or over wide pH ranges. Extensions are

thus needed which derails the standard calibration work-

flow, some CQAs are inherently difficult to model (i.e.

HCPs), and a lack of high throughput, high resolution and

orthogonal analytical data is still limiting the field. Fur-

thermore, there is a gap in data availability that could be

used for training and validating the model, similarly as

mentioned for Biophysics above. Within a single com-

pany where the transferability from lab data to process

scale data is not possible, as they have been recorded with

different systems or purposes, publicly available datasets

are not available that would allow easy testing of new

model isotherms and other approaches. Validating a new

model often requires generating all the data needed from

scratch for model development.

As is evident in the presentations by Prof. Carta on the

influence of different conformations and binding config-

urations of a bispecific mAb on adsorption and Prof. Frech

on the elution behavior at high load densities at the

workshop, see Table 1, some of these issues are being

efficiently addressed by the academic community, either

alone or in industry-academic partnerships (NIIMBL).

These academic-industry partnerships [36�] hold the

promise to address some of the remaining theoretical

gaps in downstream processing, which are robust iso-

therms for mixed-mode chromatography and/or HIC

chromatography, functionalized depth filters which are

in general not very well understood and frameworks on

how to deal with diverse impurities such as HCPs. Lastly,

the intersection of making use of biophysical parameters

for a certain molecule to supplement the mechanistic

model and reduce the initial investment in experimenta-

tion is an area that is being addressed by industry-aca-

demic collaborations [13,17].

It would be beneficial if the tools that are currently

available for mechanistic modeling better support the

user in selection of the appropriate isotherm and guide
Current Opinion in Chemical Engineering 2022, 36:100813 
the user through an efficient calibration workflow. A

comprehensive review of downstream mechanistic

modeling is provided in Ref. [37��], and multiple exam-

ples of industrial application are presented in Ref. [2�].

The workshop also comprised a session on mechanistic

modeling of upstream processes, however, this publica-

tion is focused on the downstream aspects of mechanistic

modeling. The mechanistic modeling of upstream pro-

cesses is somewhat more challenging than for down-

stream processes. The upstream process consists of at

least three very different elements, the equipment and

input materials, the biological system of the cell and the

target output molecule, that is, the antibody and its

various embodiments. The equipment is reasonably well

understood as described in the computational fluid

dynamics (CFD) section of this manuscript. The biologi-

cal system of the Chinese hamster ovary (CHO) cell is

sufficiently well understood and there are metabolic-flux-

analysis models and other models that can well describe

the growth behavior of the cells. In addition, the products

such as antibodies are very well characterized. The chal-

lenge seems to lie in correlating changes in equipment or

process parameters not to cell growth or behavior but on

the output of the product. Further insights into to the

status of upstream modeling may be found in Refs.

[38�,39].

Plant modeling

Plant modeling (can also be referred to as flowsheet model-

ing), is the combination of complex causal relationships

from the lower scales, see Figure 3 into interconnected unit

operation models to study, analyze and evaluate the full

decision space ofa givenend-to-endprocess.Thebenefitof

developing and employing such a model (whether at steady

state or dynamic) is having the opportunity for process

design and idea testing (so called ‘what if analysis’) consid-

ering, where necessary, uncertainty (e.g. robustness analy-

sis). Plant modeling activities range from research over

research-industrial to industrial activities. There is a clear

gap from participants on plant modeling, see Figure 2, on

three main things, what is the objective, why such a

problem is complex and how to navigate it, and what

commercial tools exist that are ready to deploy.

Top challenges

1) Problem translation — formulation of challenges into

explicit problem definitions that satisfy full scale

manufacturing constraints

2) Technology/topologies — how to efficiently generate,

screen and select appreciated technologies/topologies

before large investments in dedicated, multi-product,

multipurpose, mixed, and modular designs

3) Batch & Continuous evaluation — how to generate

topological process alternatives either for batch or
www.sciencedirect.com
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continuous or in combination and selection of the best

based on quality and manufacturing requirements

4) Solution methods — how to incorporate and handle

decision variables (integer and continuous) in both

deterministic and stochastic instances

5) Computer-aided tools — selection of the right tool for

the right problem incorporating research and develop-

ment methods for obtaining efficient solutions

The three gaps mentioned above will be addressed based

on the three presentations and the Break-out session

given at the workshop (see Table 1) and the current state

in transitioning from academia to industry. In an indus-

trial context, many different types of challenges exist, for

example, what are the key design decisions for new

processes, how to identify retrofit for increased capacity,

how to introduce a new product into an existing process,

and so on? To be able to navigate these and other

challenges, there is a need to both categorize and define

these challenges into clear problem definitions. Here,

three problem definitions are defined as seen emerging

from the industry thereby giving rise to different digital

twins (Siemens Digital Industries Software: Digital Twin.

https://www.plm.automation.siemens.com/global/en/

our-story/glossary/digital-twin/24465). Problem 1,

referred to as the design problem where for a new product

with specified requirements (throughput, purity, yield

etc.), designs a (core) process to achieve these require-

ments [40]. Problem 2, referred to as the retrofit problem

where for an existing product and known achievable

requirements, modifies an existing design of a (core)

process to improve processing [41]. Problem 3 and often

overlooked referred to as the incorporation problem

where for a new product with specified requirements,

retrofits an existing design of a (core) process to incorpo-

rate this new product. The three defined problems give

rise to different, terminal process designs as follows:

dedicated processes, multi-product processes, multi-pur-

pose and modular processes [7]. Dedicated processes are

defined by: as topology is fixed, product is fixed, and the

mode of operation can either be batch or continuous.

Multi-product processes are defined by: as topology is

fixed, product is varying, and the mode of operation can

either be batch or continuous. Multi-purpose processes

are defined by: as topology is varying, product is varying,

and the mode of operation can either be batch and/or

continuous. Modular processes are defined by: how units,

process sections and thereby, process are defined in terms

of unit-unit connectivity and combination, if these are to

generate modules that can be utilized in a plug and play

fashion. This introduces both flexibility (e.g. increasing

capacity) and agility (e.g. the rate at which capacity can be

increased) [42,43].

Plant modeling is generally approached and solved as a

multiscale problem where different scales of information

must be analyzed, curated, and combined for
www.sciencedirect.com 
representation of system complexities both at the process

and plant levels. The plant model is defined as the combi-

nation of the different processes (core, auxiliary or support-

ing) working in synchronicity to achieve product require-

ments. For plant modeling the multiscale, combinatorial

abstraction of the problem can be explained by interlinked

phenomena, that is, a unit operation coupled to the unit

operation model, coupled to the process model (multiple

unit operations connected), and coupled to the auxiliary

model (e.g. raw material supply) and supporting systems (e.

g. solvent systems), respectively. Therefore, the decision

space is huge and gives rise to a mixed-integer non-linear

(MINLP) problem [44,45].

At the plant scale, the product is produced at the required

quantities based on the market demand. At this scale, for

example, phase III clinical trials are also manufactured

due to the amounts required. Based on both the regula-

tory environment for maintaining patient safety via prod-

uct quality and documentation, changes to the process for

phase III manufacturing are challenging and undesired.

Therefore, a dilemma arises on how to a priori generate,

screen, select and test ideas that can be implemented in

new as well as existing plants in order to achieve product

requirements both economically and sustainably.

Early stage techno-economical evaluation utilizing a mod-

ular analytical approach where bill of materials (BoM),

overall (projected) process performance and realized effi-

ciencies from known products can be combined and used to

evaluate scenarios [46]. This allows the identification of

where to focus, for example, should raw materials be

replaced to improved sustainability or should the process

be improved to enhance product economy and so on.

Highlighted computer-aided tools that are available off-

the-shelf for this type of early stage evaluation include

BioSolve Process and the industrial-university consortium

Techno-Economic Engine [47]. Next is screen and select,

where detailed process models representing the existing

plant virtually at both the unit operation and process level

can be developed asa digital twin andused toperform ‘what

if analysis’ to select the best, sustainable ideas for final

implementation [42]. Computer-aided tools for this type of

detailed material flow analyses include GAMS, PYOMO

INOSIM, gPROMS, SuperPro Designer, and though less

specific, Anylogic and ExtendSim. Finally, continuous

improvement for process optimization [48��] can be per-

formed for minimizing cost, maximizing sustainability,

maximizing throughput and so on, and computer-aided

tools are a combination of those aforementioned, subject

to limitations of uncertainties and potential, known/

expected sensitivities.

Computational Fluid Dynamics (CFD)

Computational Fluid Dynamics is a specific type of

mechanistic modeling that refers to the numerical

method of simulating steady and unsteady fluid motion
Current Opinion in Chemical Engineering 2022, 36:100813
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using numerical methods and has become a commonly

applied engineering tool for simulating complex fluid

flows involving solid interactions. The ever-growing

availability of high-performance computing (thanks to

Moore’s law [49]) and development of numerous com-

mercial codes has fueled the uptake in applying CFD

modeling over the past two decades. In fact, most major

biopharmaceutical companies have now established some

internal CFD capability. It is now common to see CFD

applied to systems involving agitated vessels (e.g. mixing

tanks [50,51], bioreactors [8,52–54], and UFDF tanks),

and increasingly common in its application to other

biopharmaceutical unit operations, for example, chroma-

tography [55–60] and for general validation [61–63]. The

apparent maturity of CFD is presented in Figure 2.

Top challenges

1 Established industry best practices

a No best model for a given unit operation – need to

balance complexity with requirements

b Most CFD models are a combination of CFD and

other mechanistic models (turbulence, binding iso-

therm, porous media, population balance, etc.)

c There is still a need for collaboration and sharing of

best practices / common tools

2 Collaboration between experimentalists is needed to

develop and adequately validate CFD models

3 Value is maximized by doing CFD further upstream in

equipment or process development

The broad expansion in application of CFD can be

attributed to the development of additional mechanistic

models (population balance, multiphase models, kinetic

expressions, Darcy’s law [64] etc.) that can be combined

with CFD to extend its predicative capability. In fact,

most CFD simulations are now a combination of CFD,

and other models that enable capture of additional mech-

anistic phenomena like bubble breakage/coalescence,

chemical reactions, filtration, and precipitation. With

these developments arise a need to balance complexity

with model requirements and ensure that a model is

sufficiently fit for purpose. Depending on the questions

being asked of a CFD model, there is often not a single

best model for a given unit operation.

As previously discussed [1��], CFD is still generally used

to provide directional guidance in early stage activities or

as supporting evidence despite its ability to provide high

resolution results. The primary regulatory science gaps

and challenges that have impeded the biopharmaceutical

industry from reaching a future state of having digital

twins for equipment are:

� Unknown credibility of existing CFD models: Most of

the CFD models developed within the industry receive
Current Opinion in Chemical Engineering 2022, 36:100813 
little to no rigorous evaluation and therefore have

unknown credibility. The fact that CFD models can

often be predictive without estimating parameters has

enabled the directional use of CFD without rigorous

comparison to experimental data.

� Lack of experimental methods and data for comparing

to CFD results: Accurately characterizing a flow field is

complicated and an area where the industry has little

experience beyond the use of aggregate measures like

mixing time and outlet concentration profiles. Gener-

ating appropriate experimental datasets to evaluate up

against the CFD and any other models is a critical part

of establishing credibility of a model. Good collabora-

tion between experimentalists and model developers is

critical to generating the appropriate datasets.

� Lack of established best practices for CFD: These

include pre-processing and CFD best practices, and

full end to end case studies for common unit operations

that include the entire credibility assessment process

across a wide range of operating conditions. Limited

knowledge exists in the public domain even for the

simple case of establishing mixing times in an agitated

vessel.

While there has been much, a lack of published industry-

accepted approaches for model development and valida-

tion still prevents CFD from being used in later stage

actives as primary data. This is not a problem specific to

CFD but impedes development of improved work pro-

cesses that use computational models to offset experi-

mental work. Publication of case studies in a peer

reviewed journal or establishment of industry wide stan-

dards for unit operations commonly modeled with CFD is

a necessary first step toward the future state of using CFD

models as a digital twin for common unit operations. CFD

models should thus encompass computational grid

requirements, domain decomposition, model setup,

experimental requirements for generating datasets for

validation, statistical approaches for validating CFD mod-

els, and defining boundaries for where CFD models are

predictive.

Conclusion
In addition to the focused modeling areas covered in the

4MMW, a broader discussion of challenges associated

with implementation of modeling in lieu of experimen-

tation was discussed in the Open Challenges Session. A

detailed summary of the trajectory and opportunities for

the modeling field is presented in Figure 3. One of the

key challenges is the ability to incorporate modeling into

regulatory submissions, especially for biophysics and

CFD, when a full mechanistic understanding is not

available. Statistical methods like DoE are widely used

and accepted in regulatory submissions, thus one poten-

tial approach is the utilization of hybrid models which

combine mechanistic and empirical components with the

general experiments, that needs to be performed anyway.
www.sciencedirect.com
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Experiments at different scales as a mandatory part of

process development will complement the hybrid model

to handle CQAs that may otherwise only be handled

empirically, and the model will thus improve the experi-

mental protocol leading to a better process and/or less

experiments.

A key consideration to significantly advance the state of

modeling is the various ways that models can be

employed to: guide experimentation, control processes,

evaluate value proposition for new products (manufactur-

ability). A near term objective is the development of

approaches to predict impending failure (e.g. loss of

chromatographic column separation performance).

Modeling can also be employed to describe and help

understand secondary kinetics effects on surfaces such as

unfolding and on-column aggregate formation. Although

the quantitative requirements for a model may vary based

on the application (e.g. directional to guide experimenta-

tion versus fully quantitative efficient models for feed-

back control in continuous processing) all modeling

approaches need to be scientifically rigorous not merely

abstract mathematical constructs — effectively, a transi-

tion from black-box to grey box to white box models

[65,66].

One current challenge is the lack of standardization of the

modeling tools and the ability to benchmark performance

(efficiency and accuracy) versus a standard case. Avail-

ability of open-source modeling software that is standard-

ized and useful as a benchmark with a standard experi-

mental system (e.g. NIST mAb [67]) would alleviate this

challenge. The linkage to an experimental dataset (or

diverse datasets) for model verification coupled with a

fundamental understanding of the underlying mecha-

nisms for a specific system are important to avoid

‘misuse’, leading to incorrect or unphysical results. Per-

haps the development and maintenance of this diverse

dataset could be pursued by a consortium [1��] or via a

standardization organization (NIST). This proposed

approach would ensure that modeling tools are mathe-

matically convergent and physically realistic and will

serve to continue to build confidence in the approach.

Publication of case studies and a benchmark comparison

of hybrid versus mechanistic modeling would also be

quite beneficial to further advance the state of modeling

into machine learning models that do not stray into

unphysical boundaries. Current gaps include Biophysical

tools to measure and describe binding to custom affinity

ligands.

This review presents the authors’ view of the current

status of modeling tools in the biopharmaceutical indus-

try, and the challenges to progress the field. The model-

ing workshop series was established by industry repre-

sentatives to share knowledge and experiences to
www.sciencedirect.com 
advance implementation of advanced modeling tools in

the biopharmaceutical processes. The tools will ensure

better understanding and development of the processes

and thus produce better products for patients, and the

workshop series will continue to help advance the devel-

opments in the field. The next workshop is planned to

occur in 2023.
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